Postharvest Dry Matter and Soluble Solids Content Prediction in d’Anjou and Bartlett Pear Using Near-infrared Spectroscopy | WSU Tree Fruit | Washington State University Skip to main content Skip to navigation

Postharvest Dry Matter and Soluble Solids Content Prediction in d’Anjou and Bartlett Pear Using Near-infrared Spectroscopy Published In HortScience, 53(5):669-680, 2018, by A. Goke, S. Serra, S. Musacchi

Abstract: Dry matter (DM) has recently been proposed as a new quality index for apple, inspiring similar investigations in other tree fruit crops. Near-infrared spectroscopy (NIR) enables the nondestructive estimation of DM and other quality attributes, although the accuracy and reliability of this technology on North American pear varieties remain untested. In this study, predictive NIR regression models were developed for non-destructive determination of postharvest DM and soluble solids content (SSC) in d’Anjou and Bartlett pears (Pyrus communis L.) using a commercially available NIR spectrometer. At calibration, models performed reliably with coefficients of determination (R2)of 0.940 (DM) and 0.908 (SSC) for model trained on d’Anjou pears and 0.860 (DM) and 0.839 (SSC) for model trained on Bartlett pears. Application of the models to independent validation datasets demonstrated acceptable performance with R2 values ranging from 0.722–0.901 and 0.651–0.844 between measured and predicted DM and SSC values, respectively. Differences in performance can be attributed to the different DM and SSC values and maturity levels between the fruit used for model calibration and those in the validation datasets. Although not all models developed in this study were accurate enough for quantitative determinations, NIR devices may be useful for orchard management decisions and fruit sorting purposes.

Link: https://doi.org/10.21273/HORTSCI12843-17

Washington State University