Skip to main content Skip to navigation

Pruning of Manchurian Crabapple for Management of Speck Rot and Sphaeropsis Rot in Apple Published In HortScience, 53(3):329-333, 2018, by Parama Sikdar, Mike Willett, Mark Mazzolla

Abstract. Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens are fungal pathogens that cause postharvest speck rot and Sphaeropsis rot, respectively, in apple. Under quarantine regulations established by the Chinese government, export of apple from Washington State to China was banned between 2012 and 2014 because of detection of these pathogens in apple shipments. Previous studies established that pycnidia of P. washingtonensis and S. pyriputrescens survive in twig cankers on Manchurian crabapple which serves as a dominant pollinizer in the Washington State apple industry. These pycnidia serve as a primary source of inoculum for infection of apple fruit in the orchard. The objective of this research was to conduct a study at multiple locations in Washington State to determine the efficacy of implementing Manchurian crabapple pruning as a method to control speck rot and Sphaeropsis rot in storage. Four commercial orchards at geographically distant locations in Washington State were selected in 2014 and three in 2015. In 2014, two treatments included preharvest pruning of Manchurian crabapple and postharvest application of pyrimethanil and untreated control. In 2015, preharvest pruning alone (PO) of Manchurian crabapple was included in addition to the two treatments examined in 2014. Pruning conducted in concert with postharvest fungicide treatment significantly reduced the incidence of speck rot and Sphaeropsis rot in storage during the initial experimental field season. During year 2, both the PO and pruning with postharvest fungicide application controlled fruit rot with no significant difference between the two treatments. Findings from this study will be instrumental for the control of these postharvest diseases and maintenance of international market access for fruit from the Pacific Northwest.

Read full article

Washington State University